

Net-zero in Agriculture:

Role of Technologies

Contents

Impact of Climate change on Agriculture and Food Systems

Impact of increasing GHG emissions on Agriculture and Food Systems Risks posed for business sustainability

Net-zero commitments in response to these risks

Challenges in achieving net-zero commitments

The emerging role of Technologies

Introduction to Net-Zero Technologies for Agriculture 7 priority digital and non-digital technology clusters Scaling these technology clusters

Climate change is affecting the accessibility of arable land and the productivity of both crops and livestock, threatening both food security and incomes of smallholder producers

The detrimental consequences of climate change also pose multifaceted risks to the sustainability of agri-food businesses

Climate change identified as key risk by major Agri and food corporates

Currently the materiality matrix of most of global corporates identifies climate change and sustainable sourcing as issues that are important to stakeholders and that have a significant impact on business operations.

Risks associated with the increased GHG emissions

As a response to the risks, several corporates have set voluntary net-zero commitments

Increasing commitments towards net-zero Transitions

Example of decarbonization commitments of agriculture and food system corporates

• These countries have introduced, or plan to introduce, regulations promoting the decarbonization of supply chains

IRACE TO ZERO

to net-zero targets in their NDC*s

• More than 70 countries, accounting for

76% of global emissions, have committed

 550 agri-food sector companies are committed to setting science-based targets for decarbonization

THE NET

STANDARD

SCIENCE BAGHD TARCETS (\bigcirc)

idh

Intellecap

 Of these, 176 have committed to netzero emissions

Committed to reducing emissions by 20% by 2025 from its baseline year of 2018, 50% by 2030, and to reaching net-zero emissions by 2050

One of the major hurdles in fulfilling net-zero commitments lies in reducing scope 3 emissions

Technological innovations can plan a keystone role in helping mitigate scope 3 emissions;

IDH and Intellecap studied several of these innovations

Approach followed to derive high impact technology clusters Accessed Grouped Mapped Agri-corporate supply Grouped technologies Scored potential tech • clusters based on their chain & mapped GHG into 13 potential clusters emissions efficiency and feasibility Potential technologies 80 Consider Select Consider for further evaluation on how a RF Based tech downstream combination of Selected 70 these technologies 5 high Low Carbon Mechanization for Energy with the selected impact Efficiency Inputs regenerative technologies bring clusters 60 agriculture Waste in higher efficiency Management FEASIBILITY 50 RÉ Based Explore these tech Upstream clusters as they Precision Observe these

Observe

Genetic Breeding 40 30 20

clusters till they

efficiency and/or

realize higher

feasibility

require and require certain enabling environment for implementation in LMICs

Aariculture

Explore

Logistics Optimization

EFFICIENCY

Optimization

IC

Intellecap

The study prioritized 5 high-impact technology clusters and 2 enabling clusters that have the potential to significant mitigate scope 3 emissions

 $\bullet \bullet \bullet \bullet$

Technology clusters refer to groups of digital and non-digital technologies that share similarities and have the potential to reduce GHG emissions across an agri-corporation's supply chain

Enabling cluster

Shortlisted clusters based on an assessment of their potential to reduce GHG emissions and their feasibility of implementation in low and middle-income countries.

Enable transitions to net-zero emissions by facilitating mapping, measurement, or buying carbon credits

Low Carbon Inputs	Upstream Renewable Energy	Waste Management		Energy ficiency	Precision Agriculture Optimization	GHG Acco Solutio	0	Carbon Financing Platforms	ich intellecap	
Technologies that reduce GHG emissions through efficient farm and livestock waste management.			Farm Waste Management				Livestock Waste Management			
Nestle's foo	72233	ABOUT	Technologies like microbe-based decomposition; gasification, pyrolysis using thermos-chemical pathways and fermentative and oil plant based biorefineries that convert agricultural farm waste and crop residue into useful products like packaging materials, fuel, fertilizer, specialty chemicals etc.				Technologies like anaerobic digestors, urease inhibitors, composters and bio-digestors. that mitigate methane and ammonia emissions from manure storage and deposition.			
on farm was managemei and circular	nt rity	PATHWAYS		Reduce GHG emissions due to farm waste disposal and crop burning			Reduce methane & ammonia emission from livestock manure			
NATIV Casc soft drink ma berry, which	uced NESCAFÉ ara, a carbonated ide from the coffee is typically discarded	Emission Hotspot Impacted		Benefits				Challenges		
beverage wi notes, introd	presents a unique th floral and fruity luced in Australia. under its Les	Farm gate		managin potential	ve technologies for g farm waste have the to reduce GHG is by 5-15% across the	Cos	:	Complexity	Capability	
Recettes de Nestle launc dark chocola incorporates innovative m	L'Atelier brand, hed Incoa, a 70%	10-12%* 10-12% impact in C emission mitigation Farm gate		supply cl Reduces 		Income f managing might not of expenses fo collectior process	waste fset the r waste and	Farmers might need extensive training for effective waste management.	Waste aggregation to usable volumes is highly complex in rural settings with limited infrastructure	

Waste Management Energy Efficiency Precision Agriculture Optimization GHG Accounting Solutions

Carbon Financing Platforms

Technologies that enable the reduction of GHG emissions by measuring, reporting and verifying (MRV) carbon credits generated in carbon offset/ inset projects and facilitate the trade of carbon credits by connecting buyers and sellers.

Indigo Ag introduces the "Terraton Initiative" striving to eliminate one trillion tons of carbon dioxide from the atmosphere across 12 billion acres. The initiative promotes regenerative farming practices, including cover crop planting, minimizing chemical usage, crop rotation, and integrating livestock to enhance soil health.

The initiative has already sequestered approximately 40-60 MMT CO2eq and offers farmers who embrace these methods an estimated increase of \$30-\$45/acre/year in potential gross income through soil enrichment.

Designing and implementing carbon removal projects within own supply chain

ABOUT

Advanced digital technologies like satellite imaging, GIS and AI models for MRV of carbon removal programs like regenerative practices and agroforestry within a company's supply chain. Carbon trading platforms for carbon offsetting outside own supply chain

Online platforms providing real-time monitoring capabilities used to track carbon credits generated from offsetting projects like agroforestry, avoiding crop waste burning, and regenerative agriculture that take place outside a company's value chain.

- Carbon trading platforms offer a market-driven incentives to farmers to cut emissions. They could reduce up to 1.5 billion tons of CO2eq per year in agricultural emissions by 2030, aiding global climate change efforts
- Carbon finance acts as secondary source of income for farmers to adopt new practices

The seven identified technology clusters suggested in this study not only reduce GHG emissions across various activities but also enhance climate resilience

A multistakeholder approach is required for scaling the adoption of these technologies for net-zero agriculture

....

Stakeholder category	Actions							
IIII Corporates	 Train their suppliers about publicly available tools for emission monitoring Collaborate and pre-competitive levels to test high impact technologies Incentivize farmers to adopt technologies by offering sustainability differential, Payment for Economic Services (PES) / Differentials 							
Technology providers	 Bundle GHG-reducing technologies with other services, such as financing and building market linkages, to improve adoption. Design custom made solutions as per the needs of the supply chain 							
Government	 Create an enabling environment for data sharing on the efficacy of technologies Mobilize funds to facilitate designing of blended finance vehicles Provide incubation support 							
Financial institutions	 Link lending terms and finance to ESG scores Design and offer innovative financing mechanisms to suppliers and technology providers Ex. (Result based financing, Risk mitigation instruments, bundled financial instruments) 							
Industry Associations and Coalitions	 Create awareness on the advantages of adopting available technologies Setting up a platform to facilitate collaboration among stakeholders Co-finance and implement pilot programs 							

Thank You

